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LETTER TO THE EDITOR 

Edge states in a strong magnetic field 
. I  
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Institute of Physics, Academia Siniw., Taipei, 11529, Taiwan 

Received 18 October 1993 

Absuad. Energin and wavefunctions of edge states in a twc-dimensional electron gas an: 
evaluated for a finite step potential banicr model. The SpcCtNm exhibits richcr slruclure 
lhan obscrvcd previously for an infinite barricr model. Surprisingly, instead of smooth 
hndau level bcnding in the vicinity of the barrier, the levels acquire a step-like form. Thew 
plateau have a direct impacl on the widlhs of the magnctotmnspofi conducting channcls. 

Strong magnetic fields allowed the discovery of such dramatic phenomena in a two- 
dimensional electron gas (~DEG) as the integer and fractional quantum Hall effects. In 
the microscopic theory [I] the edge states, classically represented by electrons skipping 
in circular segments along the edges, play a dominant role. Many magnetotransport 
experiments in a ZDEG have been qualitatively understood recently by means of a simple 
edge-state model [2]. This model is based on the picture of smooth Landau-level bending 
by the potential formed by external charges. The intersections of each Landau level 
with the Fermi surface create widely separated narrow edge channels [3]. Recently 
Chklovskii et a1 141, using the self-consistent electrostatic approach, showed that the 
resulting effective potential should acquire a step-like shape. The Landau-level bending 
following these steps would transform the narrow edge channels into broader ones. 

The semiclassical notion of the Landau-level bending is not always applicable to 
the electronic structure in the vicinity of the barrier representing an edge or an interface 
(or random potential). The existing explicit quantum mechanical model [5] is limited 
to the extreme case of an infinite barrier. This special barrier may fail to account for 
certain aspects of the surface/interface electronic structure, e.g. the existence of localized 
surface/interface states [6]. 

In this letter, a finite step potential is considered to better approximate the interface. 
This might be either be a ‘boundary’ confining a ZDEG or an interface between two 
different materials. The finiteness of the barrier confining the ZDEG is especially impor- 
tant if the confinement is realized by means of an interface between two similar mat- 
erials. Then, in very strong magnetic fields the induced level splitting may reach 
comparable values. 

Here, we study a system of 2~ non-interactmg electrons in the vicinity of a boundary 
under the homogeneous magnetic field B perpendicular to the xy plane. The edge or 
interface is described by a finite potential barrier between two materials (regions) L 
and R. In the region L the potential is lower by an amount Y than in the region R. 
We assume that the interface is placed along the line x=O. 

t Permanent address: Institute of Physics, Academy of Sdenns of the Czech Republic, Prague. 
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The one-particle Hamiltonian in the Landau gauge A 3 (0, Bx, 0 )  is 

In this gauge the motion along the y direction is free and we can separate variables: 

where +,&) obeys the onedimensional equation 

where &lic/eB is the magnetic length, co.zeB/mc is the cyclotron frequency and X 
is the distance of the centre. of a Larmor orbit from the interface. This is the Schr5dinger 
equation for the harmonic oscillator superimposed with the step barrier. The integer n 
parametrizes discrete Landau leek. In the extreme case of an infinite step barrier, a 
simple boundary condition of the vanishing of the wavefuction is imposed: 

+"AO) =o. (4) 

This was studied by McDonald and S t M a  [5] ,  who obtained energies of first few levels 
as a function of the distance X. Deep inside the region L (X<<O) the influence of the 
interface is negligible and Emz-tRo.(n+ i), n counting the Landau levels in the bulk. 
As X approaches the barrier, the energy levels rise due to repulsive effect of the infinite 
barrier. For orbits centred in the 'forbidden' region R the energies continue to rise 
indefinitely. 

In systems of practical importance, the potential barrier is typically nof much larger 
than the magnetic level spacing lim.. For example, in the ZDEG formed at the interface 
between GaAs and GaAI, -,As,, the effective interface potential barrier is only about 
0.3 eV. The Landau level spacing in the strongest magnetic fields experimentally avail- 
able is just a few times smaller. 

When the interface barrier is finite, the simple boundary condition (4) should be 
replaced by a quantum mechanical matching of general solutions of (3) along the 
boundary line x=O. Because of the explicit translational invariance in they direction, 
the wavefunction matching for +nJ(x) has to be performed at a single point x=O. It 
is convenient to shift the origin of the coordinate system to X; in natural units of 
magnetic length: x ' = ( a / a ~ ) ( x - X ) .  The energy expressed in units of Landau spacing 
EmG is &.=Enx/(hsJ=v.+ 4. Equation (3) then takes a form 

which is the differential equation defining the parabolic cylinder functions [7]. The two 
linearly independent solutions D&) and D,( -x') satisfy asymptotically the condi- 
tions of rapid decrease for x'-r+co and x'-r-co respectively. 
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Figure 1. Eigenvalues of three lowest Landau levels, E,(X)= h & ( X )  + i). The eneees 
are expressed in terms of n ( Q ,  as functions of X, the eentre of the Lamor orbit with 
respect to the barrier. Different curves mmpond to three heights of the potential barrier: 
V-OSfinr, (three at the boaom), V=5lim. (Ihree in the middle) and V=m (three at the 
top). 

The matching of the logarithmic derivatives at x' = -X (or equivalently the condition 
of zero Wronskian in the expression for the Green function of the system) gives 

This determines the energy levels v. as functions of the position X. The equation (6) 
was solved numerically using a simplied form? 

Dvn+ 1(-X)Dvn- 4x1 +D,- V+ I ( X ) D ~ - X ) = O .  (7) 
Eigenvalues v, for a few lowest Landau levels have been evaluated as functions of 

X, the centre of a h r m o r  orbit if the interface is not interfering, for two values of the 
interface potential V and are compared with those for an infinite wall IS]; see figure 1. 
Only the lowest three levels are shown. For small barrier V=O.Sliru. (three bottom 
curves) the levels simply bend a little. For an infinite barrier (three top curves) the 
levels continue to rise to infinity. The energies of states localized deep in the region L 
( X c O )  are not affected by the interface. They form the bulk Landau bands a t  v.=n 
and asymptotically do not depend on X. Qualitatively, when the radius of the classical 
Larmor orbit approaches the interface its repulsive effect pushes the energy upwards. 
Consequently a t  a given localization X, higher Landau levels start deviating from their 
bulk energies earlier than the lower ones due to their larger size-&&. 

Energies gradually saturate as the 'orbit centre' X moves deeper into the region R. 
Asymptotically, for X>>O they reach values shifted by amount V with respect to those 
in the bulk of the region A. The transition oyer the interface is accomplished more 
slowly for higher Landau levels due again to their larger size. 

The staircase shape of the curves for V= Sficu, (three middle curves in figure t )  can 
be understood as a tendency of each Landau level from region L to occupy the lowest 

t Here well known relations expressing derivatives of the parabolic cylindu functions [T were used. 
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Figure 2 Electron density I+b(x)l’for the lowest Landau level in the vicinity ofthe potential 
barrier. Jamor orbits are centred at five successive equidistant locations: X= -2.12 (short 
dashed), X=-0.71 (long dashed), X=0.71 (dot-dashed), X=2.l2 (short dashed), and X= 
3.54 (solid w e ) .  

level in R. The repulsion from the lower states pushes it towards the next plateau due 
to the non-crossing d e  for electron levels. Note that the neighbouring plateaus are 
separated by very small gaps. We found numerically that the minimal gap between the 
lowest Landau level and first excited one is just 0.12lrc0,. 

Because of the nature of the mechanism just described?, the staircase type of transi- 
tion from L to R is not restricted to just the finite-step potential. In fact, similar 
structures had been observed some time ago for a different potential. Heinonen and 
Taylor studied Hartree-type self-consistent solutions [SI. Their figure 2 indicates some- 
what blurred features of plateaus. 

Flat regions do not contribute to electric current and therefore spatially separated 
conducting edge channels are formed, similarly as in [4] although the mechanism is 
different from that in [4] and similar to that of Heinonen and Taylor 181. 

In contrast to the infinite potential barrier when electrons are restricted to the region 
L only, here the wavefunctions penetrate into the region R. Far from the interface in 
the region R, when tunnelling is negligible, they restore their bulk shapes. Several typical 
probability densities of the states in the lowest and the first excited Landau levels in 
the vicinity of the step barrier are shown in figures 2 and 3 respectively. 

The ground-state wavefunction, centred far from the barrier (X= -2.12, the leftmost 
curve in figure 2)  is a Gaussian. As X approaches the barrier, the wavefunction becomes 
compressed. Two highest peaks, corresponding to orbits ‘centred‘ on the barrier (X= 
0.71 and 2.12) clearly demonstrate how the centres of mass are iagging behind their 
classical Larmor orbit centres X. Only when the energy of a state reaches its saturation 
value inside B, is the Gaussian shape recovered (X=3.54, the rightmost curve in figure 

The next Landau level transformations in the region of the first energy plateau 
(vc=Slrw,,X around 2)  are illustrated in figure 3. Two dashed curves (X=1.77 and 
X=2.12) are nearly Gaussians with only a small bump to the left from their node. 

t The integer value ofthe barrier is not crucial to obtain the plateau structure: we observed similar struciure 
for other values of V, too. 

2). 
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Fignre 3. Elstron density 1Q,(x)12 for the first excited Landau level in the vicinity of the 
plateau of figure 1. Larmor orbits are centred at three successive equidistant locations: X= 
1.77 (dashed), X=2.12 (dot-dashed), and X=2.48 (solid curve). 

When the orbit 'centre' is moved deeper into R (X=2.48, the solid line), after its energy 
is raised correspondingly, the electron centre of mass slips back into the region L left 
of the barrier. In this case, not only &e centre of mass lags behind X, but even moves 
in the opposite direction. 

The fact that the centre of the electron's wavefunction lags behind the orbital centre 
X when the latter is moved deeper into the region R is sometimes used as an argument 
for enhanced electric charge density at the edge [2]. However this lagging behind is not 
the only physical effect determining the charge density balance. Another relevant effect 
is the increased energy of the states which can become depopulated while crossing the 
Fermi level. Obviously, a proper self-consistent quantum mechanical calculation is 
needed to quantitatively determine the overall balance. 

To summarize, energies of electron states approaching in the strong perpendicular 
magnetic field, the finite-step potential barrier, representing an edge or interface in the 
2DEG. have been investigated. In contrast to the infinite barrier model, the energies rise 
in steps (figure 1). The nth Landau level exhibits n-1 flat platans corresponding to 
n - 1 lowest Landau levels in medium R. There is a curious 'apparent level crossing' in 
a sense that the higher level approaches very close to the lower ones. Flat regions do 
not contribute to electric current and therefore spatially separated conducting edge 
channels are formed, similarly as in [4] though the mechanism of their formation is 
completely different. Here we obtain the plateaus strictly as a one-electron effect without 
any corresponding structnre of the potential. 

We acknowledge the support of the National Science Council ROC, grants NSC-82- 
0208-M-001-116 (BR) and NSC82-0501-1-00101-B11 (IB). 
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